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Abstract. The Numerov discretisation scheme is used to obtain a numerical solution of the 
one-dimensional scattering problem for an arbitrary potential barrier. The three-term 
recursion obtained from this scheme is treated by using a continued fraction technique in 
order to extract an explicit expression of the transmission coefficient and the phaseshift. The 
efficiency of the method is discussed. 

In a recent paper (Vigneron and Lambin 1980, hereafter referred to as VL) a numerical 
method for computing the transmission coefficient in one-dimensional scattering 
problems has been presented. The aim of this comment is a new formulation of the 
problem in order to obtain not only the transmission coefficient but also the wavefunc- 
tion phaseshift. Furthermore the precision has been considerably improved by dis- 
cretisation of the Schrodinger equation 

using the Numerov method (Numerov 1924) rather than the simple second-order 
difference equation considered in VL. The Numerov method gives rise to the following 
finite difference equation 

+ [1  - ~ h 2 ( o ( ~ p - i ) - ~ ) ] $ ( ~ p - i ) = 0  (2) 
when the xp form a grid of equidistant points separated by the step h. The truncation 
error in equation (2) is proportional to h 4 .  The Numerov method has been rather 
widely used to solve for the bound states of the radial Schrodinger equation encoun- 
tered in molecular or nuclear physics (see, for instance, Hajj 1974). For our purpose we 
take advantage of the fact that equation (2) is still a three-term recursion so that the 
continued fraction technique can be used along the same lines described in VL. 

It will be assumed that the potential energy o (x) is constant and equal to zero outside 
the interval ]xo, x,+~[. Following VL we look for a solution of the finite difference 
equation (2) which satisfies the conditions 

$(X,)=A[R-]'~'+B[R+]'~' ( 3 )  

for p < 0 and 
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for p 2 n 'r 1. In these expressions, R+ and K are given by 

which are complex conjugate in the energy range 0 < E < 6 / h 2 .  The problem is solved 
once the coefficients A and B involved in equation (3) are known. A first relation 
between A and B is easily obtained in the form (see VL for details) 

where the and B, are constructed recursively by 

A,+I = bp(E)Ap --ap-l(E)Ap-l  

B, = bp ( E  P p -  - up-i ( E  ) B p - 2  

for p = 2,3,  . . . , n + 1, with the starting values 

Ai =bo(&) Az= bi(E)bo(E)-ao(E) (9) 

Bo=l B1= bl(E). (10) 

The u p ( & )  and b p ( e )  which appear in the last equations are the partial numerators and 
denominators of the continued fraction generated from the recurrence 

R,-i = bp(&)  - up ( E  ) / R p  (11) 

between the ratios R, of the wavefunction values at two successive grid points x, and 
xPcl and are easily deduced from equation (2). A second independent relation between 
A and B can be found by noticing that 

Using a theorem which has been demonstrated in the appendix of a previous paper 
(Vigneron and Lambirr 1979) and after some simple mathematical transformations 
equation (12) yields 

The transmission coefficient T and the phaseshift cp are defined respectively as the 
square modulus and the phase of the complex quantity 1 / A .  Combining equations (6) 
and (13) gives the following explicit formula 

where the complex quantities 

c,+~ = A,+~-R+B, (15)  

can be recursively constructed using a recursion identical to that defined by equations 
(7) or (8). 

The use of the Numerov method implicitly supposes that the potential energy v (x) is 
doubly differentiable. In the case where a jump of potential occurs at a grid point x,, the 



The one-dimensional scattering problem 1817 

method may still be used by an adaptation of the coefficients u p ( & )  and b p ( & )  which 
connect R,-l and R,. By Taylor expansions of +(x, - h )  and +(x, + h )  and by imposing 
the continuity of the logarithmic derivative of the wavefunction at x,, one again finds 
relation (1 1) with 

and 

It has been assumed that the potential energy is equal to u - - ( x )  left of the x, and equal to 
v + ( x )  right of x, as shown in figure 1. In the case where no discontinuity occurs, 
equations (16) and (17) reduce to the expressions of u p ( & )  and b p ( & )  deduced from the 
recursion (2). 

I I . 

Figure 1. A discontinuity of the potential at a grid point xp  requires an adaptation of the 
Numerov discretisation scheme. 

As an application of the method we consider again the square top barrier already 
solved in VL 

for O < x < 2  and 

v ( x )  = 0 (19) 

for x < 0 and x > 2. Table 1 shows how the convergence of the transmission coefficient 
and the phaseshift toward the exact values (Schiff 1955) is fairly fast. As compared with 
VL, a substantial increase in precision is found. Figure 2 represents the phaseshift and 
its derivative with respect to the energy in the case where n = 100. The derivative of the 
phaseshift with respect to energy is interesting because closely related to the quantum 
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tunnelling time (Messiah 1969). This is especially important for the investigation of 
resonant states in the continuous spectrum of the one-dimensional Hamiltonian. An 
interesting description of this can be found in Goldberg et a1 (1967). 

Table 1. Convergence of the transmission coefficient and of the phaseshift for different 
discretisation step sizes of the square-top potential barrier. 

Energy E 0.5 5 20 

Transmission n = 10 
coefficient n = 50 

n = 100 
n = 200 
Exact 

Phaseshif t n = l O  
n = 5 0  
n = 100 
n =200 
Exact 

0.330 672 X lo-’ 
0.336 052 x l!~’ 
0.336 098 x lo-’ 
0.336 103 X lo- ’  
0.336 1 0 4 x  lo- ’  

-1.121 11 
-1.119 78 
-1.119 77 
-1.119 77 
-1.119 77 

0.515 719 x 0.999 688 
0.521 734 x 0.999 785 
0.521 7 8 6 ~  0.999 786 
0.521 793 X 0.999 786 
0.521 794X 0.999 786 

-0.558 281 x 6.325 85 
-0.561 872 x 6.327 04 
-0.723 432 X 6.327 06 
-0.917 858 x 6.327 06 

0.0 6.327 06 
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Figure 2. ( a )  Phaseshift (broken curve) and its derivative with respect to the energy (full 
curve) for the square-top potential barrier. ( b )  Absolute deviation of the phaseshift from 
the exact result: p - pexact. 
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